

Note

Cyanogenic and non-cyanogenic glycosides from *Manihot esculenta* (Euphorbiaceae)

Edet M Anam

Department of Chemical Sciences, Cross River University of Technology, CRUTECH, PMB 1123, Calabar, CRS, Nigeria

E-mail: edetanam@yahoo.com

Received 9 January 2008; accepted (revised) 30 September 2008

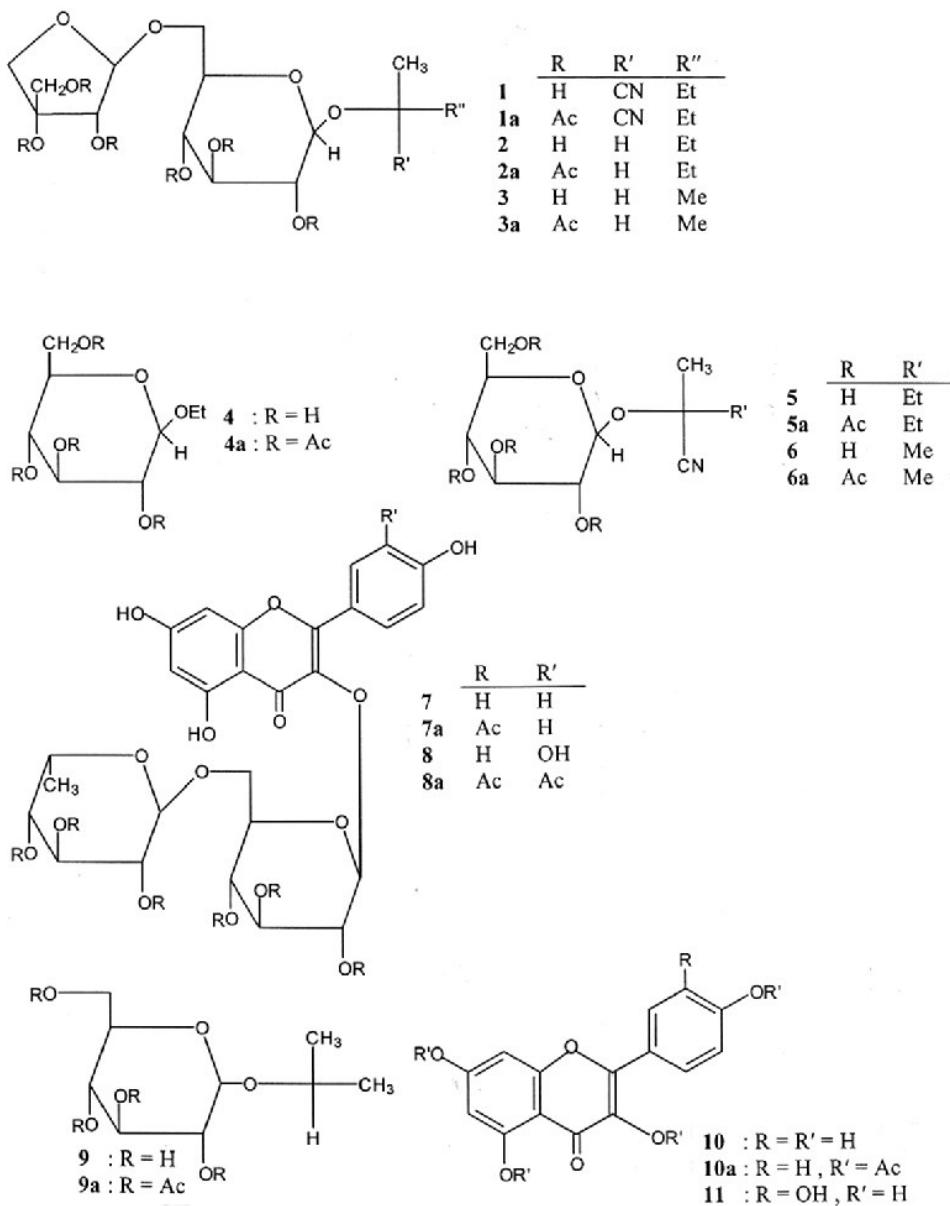
A novel cyanogenic glycoside, 2-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyloxy)-2-methylbutanenitrile, **1**, three novel non-cyanogenic glycosides, (2S)-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyloxy) butane, **2**; 2-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyloxy) propane, **3**, ethyl β -D-glucopyranoside, **4**, two known cyanogenic glycosides, (*R*)-2-((β -D-Glucopyranosyloxy)-2-methyl butanenitrile (lotaustralin), **5**, 2-(β -D-Glucopyranosyloxy)-2-methylpropane nitrile (linamarin), **6** have been isolated from ethanolic extract of the fresh rootcortex of *Manihot esculenta*. Lotaustralin and linamarin and two flavonoid glycosides, kaempferol-3-O-rutinoside, **7** and quercetin-3-O-rutinoside, **8** have been isolated from the methanol extract of the fresh leaves of the same plant.

Keywords: *Manihot esculenta*, Euphorbiaceae, cassava, roots, leaves, cyanogenic, non-cyanogenic, glycosides, flavonoids

Cassava meal is a major energy source for both humans and domestic animals in tropical countries¹. Investigation of the root cortex of *Manihot esculenta* has led to the isolation of four new glycosides, two known cyanogenic glycosides and known flavonoid glycosides. X-ray crystallographic structures of the acetylated derivatives of compounds **2** and **4** have been determined².

Results and Discussion

The concentrated ethanolic extract of the root was partitioned in CH_2Cl_2 :MeOH:H₂O (6:4:1) and it separated into two layers – upper and lower. Column chromatography of the crude material from the upper layer over silica gel gave **4**, **5** and **6**, and a mixture containing isobutyl cyanogenic glycoside **1**, isobutyl glycoside, **2** and isopropylglycoside, **3** (**Scheme I**).

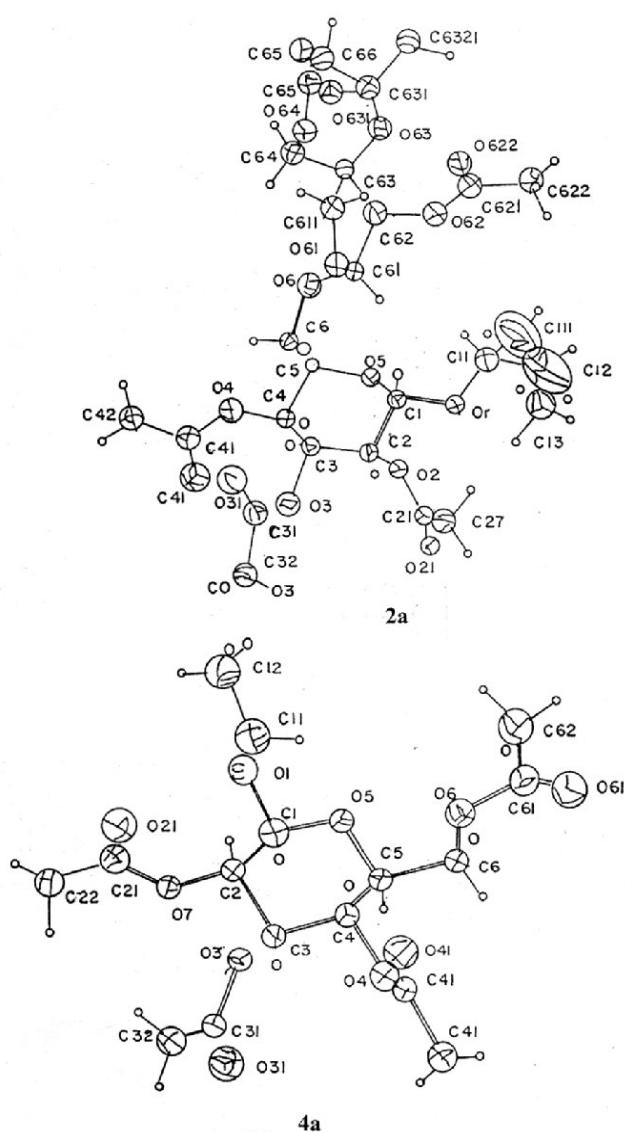

Acetylation of the mixture gave a mixture of the acetate derivatives which were resolved by column chromatography over silica gel. Deacetylation of the isobutyl glycoside acetate with methanolic K_2CO_3 yielded isobutyl glycoside **2**.

CIMS of **2** (NH_3) gave a pseudo molecular ion peak at *m/z* 386 ($\text{C}_{15}\text{H}_{28}\text{O}_{10} + \text{NH}_3$)⁺ which agreed with 15 carbon signals in the ¹³C NMR spectrum. The fragment peak at *m/z* 312 ($\text{C}_{11}\text{H}_{19}\text{O}_9 + \text{NH}_3$)⁺ corresponded to loss of an isobutoxy group ($\text{C}_4\text{H}_9\text{O}$). The ¹H NMR spectrum of **2** showed signals from two anomeric protons as two doublets at δ 4.32 (*J* = 7.5 Hz) and δ 5.02 (*J* = 1.5 Hz) which were assigned to β -D-glucose and β -D-apiose respectively. The aglycone, isobutoxy group, was indicated by the signals of two methyl groups appearing as a doublet at δ 1.24 (*J* = 6.2 Hz) and a triplet at 0.93 (*J* = 7.0 Hz), a methine proton at δ 3.72 (sextet, *J* = 7.0 Hz) and two methylene protons which gave two quintets at δ 1.47 (*J* = 7.0 Hz) and 1.62 (*J* = 7.0 Hz). The ¹³C NMR spectrum of **2** showed signals for two anomeric carbons (δ 104.0 and 111.6). The peak at δ 70.3(t) which showed a significant glycosidation shift indicates the linkage of the terminal apiose to the glucosyl moiety at C-6.

Acetylation of **2** gave hexaacetate **2a** whose ¹H NMR spectrum showed two anomeric proton signals at δ 4.54 (d, *J* = 8.0 Hz) and 5.05 (br,s) which were assigned to those of β -D-glucose and β -D-apiose respectively. The assignments for all individual sugar signals were made through selective single frequency proton-decoupling experiments. The upfield occurrences of the resonances of the H-6'a and H-6'b (δ 3.61 and 3.67, no acetylation shift) indicated that the glycosidic linkage was at C-6 of glucose. Furthermore, selective irradiation of the apiose anomeric proton, H-1'', gave NOE enhancements of the signals from H-6'a, 3.5% and H-6'b, 2% as well as of the signal from H-2'', 3.5%. The structure of **2** was deduced based on the foregoing evidence.

The acetate derivative of compound **2a** was obtained as colourless needles suitable for X-ray crystallographic analysis. The single crystal X-ray analysis confirmed the structure of **2a** and indicated the (S)- configuration at C-2: An ORTEP projection of the structure is shown in **Figure 1**. The structure of **2** is, therefore, (2S)-((6-O (β -D-apiofuranosyl) - β -D- glucopyranosyl) - β -D- glucopyranosyl) butane.

The ¹H NMR spectrum of the acetate derivative **1a** was similar to that of **2a** except that the chemical



Scheme I

shifts of C-2-CH₃, (H-3)₂ and H-4 were shifted downfield by 0.35, 0.4 and 0.18 ppm respectively compared with **2a**. This may be attributed to the presence of the nitrile group on C-2 in **1a**. Furthermore, C-2-CH₃ resonated as a singlet and the (H-3)₂ resonance was less complex.

The ¹³C NMR spectrum of **3** was similar to that of **2** except for the presence of one carbon less than that of **2** (δ 20-30-region). The two anomeric carbon signals appeared at δ 102.9 and 111.4 which were ascribed to those of β -D-glucose and β -D-apiose respectively. The CIMS of **3** exhibited a pseudo-molecular ion peak at *m/z* 372 [M+NH₄]⁺; the EIMS

of **3** showed peaks at *m/z* 295 [M-59]⁺, 221 [M-133]⁺ and 133 [M-59-162]⁺ corresponding to losses of isopropoxy, pentose and isopropoxy and hexose groups respectively. Acetylation of **3** gave hexaacetate **3a**. The two anomeric proton signals appeared at δ 4.54 (d, *J* = 7.5 Hz) and 5.05 (br,s). That the aglycone is isopropoxy group was indicated by the signals of two methyl groups appearing as two doublets at δ 1.13 (*J* = 6.0 Hz) and 1.21 (*J* = 6.0 Hz) and the septet signal of a methine proton at δ 3.91. A double quantum-filtered ¹H-¹H 2D correlation spectrum (DQFCOSY) provided assignments of all individual sugar signals. These were confirmed by

Figure 1 — Single molecules of compounds **2a** and **4a**. Thermal ellipsoids (2090) are shown for non-hydrogen atoms; hydrogen atoms have arbitrary radius of 0.1 Å. Crystallographic skeletal numbering is shown.

selective single frequency proton-decoupling experiments. In addition, NOE enhancements were observed between the CH_3 signal at δ 1.13 and $\text{H-1}'$ (δ 4.54) (26%) between H-2 (δ 3.90) and $\text{H-1}'$ (5.5%) and between $(\text{H-6}')_2$ and $\text{H-1}''$ (6%). The glycoside **3**, therefore, was characterized as 2-(6-O-((β -D-apiofuranosyl)- β -D- glucopyranosyl)oxy) propane.

The ^{13}C NMR spectrum of **4** showed eight carbon signals. An anomeric carbon signal appeared at δ 104.2. The sugar moiety of **4** was identified as β -D-glucose. The CIMS of **4** showed a pseudomolecular ion peak at m/z 226 $[(\text{M}+\text{NH}_4)]^+$ together with a

fragment ion at m/z 180 $[(\text{M}+\text{NH}_3)-45]^+$ corresponding to a loss of an ethoxy group. The ^1H NMR spectrum exhibited the signals of a methyl group at δ 1.25 (t, J = 6.5 Hz) and two methylene protons at δ 3.63 (dq, J = 9.0, 6.5 Hz) and 3.61 (dq, J = 9.0, 6.5 Hz) corresponding to the presence of an ethoxy group in **4**. Acetylation of **4** provided the acetate **4a**. The ^1H NMR spectrum of **4a** showed signals for an anomeric proton at δ 4.51 (d, J = 7.0 Hz), a methyl group at δ 1.20 (t, J = 6.5 Hz) and one methylene group at δ 3.58 (dq, J = 9.0, 6.5 Hz) and 3.91 corresponding to an ethoxy group. By selective single frequency proton – decoupling experiments assignments of individual protons of the glucose moiety were confirmed. The glycoside, **4**, therefore, was identified as ethyl β -D- glucopyranoside. A single crystal X-ray analysis of **4a** confirmed its structure. An ORTEP projection of **4a** is shown in **Figure 1**. Compound **4** may be an artefact since ethanol was used as the solvent for extraction.

Compounds **5** and **6** were identified by comparing their spectral data with those reported previously³⁻⁶. Acetylation of **5** and **6** gave the acetate derivatives **5a** (ref. 3,4) and **6a** (ref. 3-6) respectively.

The methanol extract of the fresh leaves of *M. esculenta* gave **5,6,7** and **8** (**Scheme I**). Acetylation of **7** and **8** gave the acetate derivatives **7a** and **8a** respectively. The flavonoid glycosides **7** and **8** were identified by comparison of their spectral data with those of the same compounds reported previously⁷⁻⁹ (**Table I**).

Experimental Section

All melting points are uncorrected. UV-Vis: MeOH; ^1H NMR: CDCl_3 , 400MHz; Decoupling experiments: $\text{CDCl}_3 + \text{C}_6\text{D}_6$; Optical rotations: CHCl_3 , Me_2CO and H_2O ; TLC: precoated PF_{254} plates (Merck); Column chromatography carried out over silica gel (70-230 mesh, Merck). Compounds were identified by comparison of ^1H NMR, IR and melting points.

Extraction and Isolation

Fresh cassava root cortex (2.5 kg) was ground in boiling 95% EtOH in a waring blender, filtered and the ethanolic extract evaporated to give a brown solid (100 g) which was then extracted with CH_2Cl_2 : MeOH: H_2O (lower phase, 6:4:1). Additional water was added to produce two layers. The upper layer, on evaporation, gave a brown solid (25 g). The brown

solid was column chromatographed over silica gel (1.7 kg) eluting with a gradient of $\text{CH}_2\text{Cl}_2:\text{MeOH}:\text{H}_2\text{O}$ (lower phase, 20:3:1, 3 L), (10:3:1, 4 L), (7:3:1, 7 L), (6.5:3.5:1, 7 L). Fractions were combined on the basis of their behaviour on TLC and were evaporated to give compounds **5** and **6** as solids (0.13 and 2.36 g respectively), compound **4** as a slightly yellow semi-solid (0.89 g), and a mixture of compounds **1** and **2** as a slightly yellow semi-solid (0.33 g) and compound **3** as a slightly yellow solid (4.28 g). Fresh leaves (6 kg) were ground in boiling MeOH in a blender. After filtration, the extract was evaporated to dryness and the residue washed with several portions of hexane to remove chlorophyll and other hexane-soluble compounds. The solution which was then brown was evaporated to give a dark brown solid (222 g) which was then extracted with $\text{CH}_2\text{Cl}_2:\text{MeOH}:\text{H}_2\text{O}$ (lower phase) (6:4:1). Water was added to separate the layers. The upper layer, on evaporation, gave a brown solid (80 g) which was column chromatographed over silica gel (1.8 kg) and eluted with a gradient of $\text{CH}_2\text{Cl}_2:\text{MeOH}:\text{H}_2\text{O}$ (lower phase, 20:3:1, 20 L), (10:3:1, 9 L), (7:3:1, 13 L). The TLC of the eluate showed the presence of compounds **5**, **6**, **7** and **8**. Concentration of the eluate gave a yellow-brown solid (24 g) which was rechromatographed over silica gel

(1.65 kg) eluting with a gradient of $\text{CH}_2\text{Cl}_2:\text{MeOH}:\text{H}_2\text{O}$ (lower phase, 10:3:1, 300 mL), (7:3:1, 3.4 L). Successive fractions were combined on the basis of their behaviour on TLC and evaporated to give a mixture of **5** and **6** as a slightly yellow solid (6.2 g), compound **7**, a yellow solid (0.5 g) and compound **8**, a yellow solid (0.1 g).

The mixture of compounds **1** and **2**

This was difficult to resolve with column chromatography. ^1H NMR spectrum of the mixture indicated compound **2** to be the major constituent.

Acetylation of the mixture

The mixture (263 mg) was acetylated with Ac_2O (2 mL) in pyridine (3 mL) at RT for 2 days to give a mixture of acetates, **1a** and **2a** which was recrystallised from EtOAc-hexane as colourless granules. The mixture was resolved over silica gel column with EtOAc-hexane (3.5:6.5) mixture as eluent to give **1a** (12 mg) and **2a** (248 mg). **1a** was recrystallized from EtOAc-hexane as colourless needless. m.p. 175-176.5°C; $[\alpha]_D^{25} -38.2^\circ$ (*c* 0.26, CHCl_3); IR (CHCl_3): 3000, 2975, 2240, 1750, 1415, 1365, 1220, 1050 cm^{-1} ; ^1H NMR: δ 1.05 (3H, t, *J* =

Table I — ^{13}C NMR spectral data for compounds 2-6 (D_2O , DSS as internal standard)

Carbon	2	3	4	5	6
Aglcone					
1	22.54		23.57*	-	25.79
2	72.38		75.52	68.48	78.28*
3	30.88		24.92*	16.79	35.54
4	11.32		-	-	10.40
CN	-		-	-	123.63
Glucose					
1'	104.01	102.88	104.20	101.14	100.98
2'	77.14*	75.52		75.47	75.36
3'	81.37*	78.23*	78.23		78.12*
4'	72.38		72.16		72.05
5'	78.39		77.04*	78.23	78.12*
6'	70.26		70.10		63.22
Apiose					
1''	111.53	111.38	-	-	-
2''	79.46*	78.93*	-	-	-
3''	81.86		81.70	-	-
4''	76.12		75.95	-	-
5''	66.20		66.04	-	-

*Assignments may be interchanged between the carbons in the same column.

7.5 Hz, H-4), 1.54 (3H, s, CH₃), 1.87 (2H, m, H-3), 2.0, 2.02, 2.05, 2.053, 2.08, 2.12 (3H each, all s, 6 × OAc), 3.55 (1H, m, H-5'), 3.72 (2H, m, H-6'a and H-6'b), 4.15 (1H, d, *J* = 9.0 Hz, H-4''a), 4.23 (1H, d, *J* = 9.0 Hz, H4''b), 4.53 (1H, d, *J* = 12.5 Hz, H-5''a), 4.79 (1H, d, *J* = 12.5 Hz, H-5''b), 4.83 (1H, d, *J* = 8.0 Hz, H-1'), 4.96 (1H, t, *J* = 9.5 Hz, H-4'), 4.98 (1H, dd, *J* = 9.5, 8.0 Hz, H-2'), 5.03 (1H, brs, H-1''), 5.25 (1H, t, *J* = 9.5 Hz, H-3'), 5.36 (1H, brs, H-2'').

Compound **2a**, recrystallized from EtOAc-hexane as colourless needless. m.p. 143-44°C; Found: C, 52.4; H, 6.5, C₂₇H₄₀O₁₆ requires C, 52.3; H, 6.5%. [α]_D²⁵ -63.2° (*c* 0.07, Me₂CO); IR (CHCl₃): 2950, 1745, 1400, 1360, 1230, 1020 cm⁻¹; ¹H NMR: δ 0.87 (3H, t, *J* = 7.5 Hz, H-4), 1.19 (3H, d, *J* = 7.5 Hz, H-1), 1.44 (1H, m, H-3a), 1.49 (1H, m, H-3b), 1.99, 2.022, 2.024, 2.03, 2.08, 2.11 (3H each, all s, 6 × OAc), 3.61 (3H, overlapping, H-5', H-6'a and H-2), 3.67 (1H, m, H-6'b), 4.14 (1H, d, *J* = 11.0 Hz, H-4''a), 4.22 (1H, d, *J* = 11.0 Hz, H-4''b), 4.54 (1H, d, *J* = 8.0 Hz, H-1'), 4.55 (1H, d, *J* = 12.5 Hz, H-5''a), 4.77 (1H, d, *J* = 12.5 Hz, H-5''b), 4.91 (1H, t, *J* = 9.5 Hz, H-4'), 4.93 (1H, dd, *J* = 9.5, 8.0 Hz, H-2'), 5.05 (1H, brs, H-1''), 5.19 (1H, t, *J* = 9.5 Hz, H-3'), 5.34 (1H, brs, H-2''); CIMS: *m/z* (%) 638 [M+NH₄]⁺ (100), 596 [(M+H)-25]⁺⁽¹⁾, 259 [M-361]⁺⁽¹⁾; EIMS: *m/z* (%) 361 [M-259]^{+(0.5)}, 259 [M-361]⁺⁽⁴³⁾, 73 [M-547]⁺⁽⁴⁾, 43 [M-577]⁺⁽¹⁰⁰⁾.

Deacetylation of **2a**

A solution of **2a** (160 mg) in a satd. solution of K₂CO₃ in dry MeOH (3 mL) was heated under reflux for 1.5 hr. The reaction mixture was cooled, diluted with H₂O and evaporated. The aq. solution was extracted with *n*-BuOH satd. with H₂O. Evaporation gave a solid residue which was purified by column chromatophy over silica gel eluting with 5% MeOH in CH₂Cl₂ to give **2**, colourless solid (72 mg), m.p. 114-16°C. Anal. Found: C, 47.9; H, 8.1. C₁₅H₂₈O₁₀.¹H₂O requires C, 47.7; H, 7.8%. [α]_D²⁵ -64.9° (*c* 0.09, H₂O); IR (CHCl₃): 3300(br), 2870, 1050 cm⁻¹. ¹H NMR: δ 0.93 (3H, t, *J* = 7.0 Hz, H-4), 1.24 (3H, d, *J* = 6.2 Hz, H-1), 1.47 (1H, quartet, *J* = 7.0 Hz, H-3a), 1.62 (1H, q, *J* = 7.0 Hz, H-3b), 3.30 (1H, t, *J* = 7.5 Hz, H-4'), 3.41-3.44 (3H overlapping, H-2', H3' and OH), 3.72 (1H, sextet, *J* = 7.0 Hz, H-2), 3.82-3.93 (4H, overlapping, H-4''a, H-4''b, H-5''a and H-5''b), 3.96 (1H, dd, *J* = 11.0, 1.5 Hz, H-6'b), 4.25 (1H, brs, OH), 4.32 (1H, d, *J* = 7.5 Hz, H-1'), 4.36 (2H, brs, 2 × OH), 4.67 (1H, brs, OH), 5.02 (1H, d, *J* = 1.5 Hz, H-1''); CIMS: *m/z* (%) 386 [M+NH₄]⁺⁽¹⁰⁰⁾, 312 [(M+NH₃)-

73]⁺⁽¹⁾; EIMS: *m/z* (%) 295 [M-73]⁺⁽¹⁾, 163 [(M+H)-206]⁺⁽¹⁰⁾, 73[M-295]⁺⁽⁷⁵⁾, 57[M-331]⁺⁽¹⁰⁰⁾.

Compound **3**

Compound **3** was purified by column chromatography over silica gel eluting with CH₂Cl₂: MeOH:H₂O (lower layer, 6.5:3.5:1) to give colourless solid (4.28 g), m.p. 119-20°C. Anal. Found: C, 46.2; H, 7.6. C₁₄H₂₆O₁₀.¹H₂O requires C, 46.3; H, 7.5%. [α]_D²⁵ -82.7° (*c* 0.59, H₂O). IR (CHCl₃): 3400(br), 2925, 2870, 1460, 1370, 1050 cm⁻¹; ¹H NMR: δ 1.20 (3H, d, *J* = 5.6 Hz, CH₃), 1.25 (3H, d, *J* = 5.6 Hz, CH₃), 4.31 (1H, d, *J* = 7.5 Hz, H-1'), 5.01 (1H, d, *J* = 1.8 Hz, H-1''); CIMS: *m/z* (%) 372 [M+NH₄]⁺⁽¹⁰⁰⁾, 312 [M-60]⁺⁽¹⁾, 116 [M-238]⁺⁽¹⁾; EIMS: *m/z* (%) 295 [M-59]⁺⁽¹⁾, 221 [M-133]⁺⁽²⁾, 133 [M-221]⁺⁽⁶⁵⁾, 43 [M-311]⁺⁽¹⁰⁰⁾.

Acetylation of **3**

Compound **3** (100 mg) was acetylated with Ac₂O (1 mL) and pyridine (2 mL) at RT for 35 hr to give the hexaacetate, **3a** (142 mg) which was recrystallized from EtOAc-hexane as colourless needles. m.p. 142-43°C. Anal. Found: C, 51.5; H, 6.3. C₁₆H₃₈O₁₆ requires C, 51.5; H, 6.3%. [α]_D²⁵ -58.2° (*c* 0.41, acetone); IR (CHCl₃): 3013, 2975, 2875, 1745, 1380, 1235, 1040 cm⁻¹; ¹H NMR: δ 1.13 (3H, d, *J* = 6.0 Hz, CH₃), 1.21 (3H, d, *J* = 6.0 Hz, CH₃), 1.995, 2.023, 2.029, 2.033, 2.08, 2.11 (3H each, all s, 6 × OAc), 3.64 (3H, m, H-6'a, H-6b, H-5'), 3.91 (1H, septet, *J* = 6.0 Hz, H-2), 4.15 (1H, d, *J* = 9.0 Hz, H-4''a), 4.22 (1H, d, *J* = 9.0 Hz, H-4''b), 4.34 (1H, d, *J* = 7.5 Hz, H-1'), 4.56 (1H, d, *J* = 11.0 Hz, H-5''a), 4.76 (1H, d, *J* = 11.0 Hz, H-5''b), 4.91 (1H, dd, *J* = 8.5 Hz, 7.5 Hz, H-2'), 4.91 (1H, t, *J* = 8.5 Hz, H-4'), 5.05 (1H, brs, H-1''), 5.19 (1H, t, *J* = 8.5 Hz, H-3'), 5.28 (1H, brs, H-2''); CIMS: *m/z* (%) 624 [M+NH₄]⁺⁽¹⁰⁰⁾, 259 [M-347]⁺⁽¹⁾; EIMS: *m/z* (%) 331 [M-275]⁺⁽¹⁰⁾, 275 [M-331]⁺⁽⁴⁰⁾, 259 [M-347]⁺⁽³⁾, 43 [M-563]⁺⁽¹⁰⁰⁾.

Partial hydrolysis of **3**

A solution of **3** (201 mg) in 1% H₂SO₄ in 50% aq. EtOH (5 mL) was heated at 60-68°C for 6 hr. The aqueous solution was neutralized with Na₂CO₃, filtered and evaporated to give a crude residue which was column chromatographed over silica gel eluting with CH₂Cl₂:MeOH:H₂O (20:3:1, 15:3:1, 10:3:1, lower layer) as eluent to give isopropyl-β-D-glucopyranoside, **9** (79 mg). [α]_D²⁵ -41.1° (*c* 0.11,

H_2O); IR (CHCl_3): 3400(br), 2860, 1460, 1380, 1160, 1120, 1143, 1305 cm^{-1} .

Acetylation of 9

Compound **9** (45 mg) was acetylated with Ac_2O (0.05 mL) and pyridine (1 mL) at RT for 2 hr. to give the acetate derivative, **9a** (53 mg) which was recrystallized from hexane as colourless needles, m.p. 138-40°C. Anal. Found: C, 5.25; H, 6.8. $\text{C}_{18}\text{H}_{26}\text{O}_{10}$ requires C, 52.3; H, 6.7%. $[\alpha]_D^{25} -26.4^\circ$, (*c* 0.18, CHCl_3); IR (CHCl_3): 3015, 2975, 2850, 1750, 1380, 1235, 1040 cm^{-1} ; ^1H NMR: δ 1.14 (3H, d, *J* = 5.6 Hz, CH_3), 1.23 (3H, d, *J* = 5.6 Hz, CH_3), 2.0, 2.01, 2.03, 2.08 (3H each, all s, 4 \times OAc), 3.68 (1H, ddd, *J* = 9.3, 5.0, 2.0 Hz, H-5'), 3.92 (1H, septet, *J* = 5.6 Hz, H-2), 4.13 (1H, dd, *J* = 11.5, 2.5 Hz, H-6'a), 4.25 (1H, dd, *J* = 11.5, 4.0 Hz, H-6'b), 4.55 (1H, d, *J* = 7.5 Hz, H-1'), 4.94 (1H, dd, *J* = 13.7.5 Hz, H-2'), 5.07 (1H, t, *J* = 9.3 Hz, H-4'), 5.21 (1H, t, *J* = 9.3 Hz, H-3').

Compound 4

Compound **4** was purified by column chromatography over silica gel eluting with 3% MeOH in CH_2Cl_2 to give colourless semi-solid $[\alpha]_D^{25} - 30.9^\circ$ (*c* 0.32, H_2O) [lit, Ferguson, 1932]. $[\alpha]_D^{25} - 36.7^\circ$; IR (Neat): 3400(br), 2875, 2825, 1060 cm^{-1} ; ^1H NMR: δ 1.25 (3H, t, *J* = 6.5 Hz, H-2), 3.23-3.28 (2H, overlapping, H-5' and OH), 3.43-3.46 (2H, overlapping, H-2' and H-3'), 3.56 (1H, t, *J* = 6.0 Hz, H-4'), 3.63 (1H, dq, *J* = 9.0, 6.5 Hz, H-la), 3.79 (1H, m, H-6'a), 3.84 (1H, m, H-6'b), 3.96 (1H, dq, *J* = 9.0, 6.5 Hz, H-1b), 4.31 (1H, d, *J* = 7.0 Hz, H-1'), 4.21, 4.53, 4.58 (1H each, all d, *J* = 3.0, 2.0, 3.0 Hz, 3 \times OH); CIMS: *m/z* (%) 226 [$\text{M}+\text{NH}_4$]⁺(100), 208 [M]⁺(3), 180 [$(\text{M}+\text{NH}_3)-45$]⁺(33), 163 [$\text{M}-45$]⁺(4).

Acetylation of 4

A solution of **4** (40 mg) in pyridine (1.5 mL) and Ac_2O (1 mL) was stirred at RT under N_2 for 3.5 hr. The acetate, **4a**, was obtained as a colourless solid (65 mg) which was purified over silica gel eluting with 1% MeOH in CH_2Cl_2 to give a colourless solid which was recrystallized from EtOAc-hexane as colourless rhombic crystals. m.p. 106-07°C (lit; Ferguson, 1932, colourless needles, m.p. 106.8°C). Anal. Found: C, 51.5; H, 6.4. $\text{C}_{16}\text{H}_{24}\text{O}_{10}$ requires C, 51.1; H, 6.4%. $[\alpha]_D^{25} -23.6^\circ$ (*c* 0.11, Me_2CO) (lit⁷; $[\alpha]_D^{25} -22.7^\circ$); IR (CHCl_3): 3000, 2975, 2875, 1750, 1435, 1380, 1245,

1035 cm^{-1} ; ^1H NMR: δ 1.20 (3H, t, *J* = 6.5 Hz, H-2), 2.01, 2.02, 2.05, 2.09 (3H, each, all s, 4 \times OAc), 3.58 (1H, dq, *J* = 9.0, 6.5 Hz, H-la), 3.69 (1H, ddd, *J* = 9.0, 4.0, 2.0 Hz, H-5'), 3.91 (1H, dq, *J* = 9.0, 6.5 Hz, H-1b), 4.14 (1H, dd, *J* = 11.0, 2.0 Hz, H-6'a), 4.27 (1H, dd, *J* = 11.0, 4.0 Hz, H-6'b), 4.51 (1H, d, *J* = 7.0 Hz, H-1), 4.98 (1H, dd, *J* = 9.0, 7.0 Hz, H-2'), 5.09 (1H, t, *J* = 9.0 Hz, H-4'), 5.20 (1H, t, *J* = 9.0 Hz, H-3'); CIMS: *m/z* (%) 394 [$\text{M}+\text{NH}_4$]⁺(100), 352 [$(\text{M}+1)-25$]⁺(1).

Compound 5

Compound **5** (127 mg) was purified by column chromatography over silica gel (12.7 g) eluting with $\text{CH}_2\text{Cl}_2-\text{MeOH}-\text{H}_2\text{O}$ (10:3:1 and 7:3:1, lower phase) to give colourless solid which recrystallized from EtOAc-hexane as colourless granules, m.p. 125-26°C (lit³ 123.5-24.5°C); $[\alpha]_D^{25} -17.4^\circ$ (*c* 0.22, H_2O) (lit³. -19.15°) (*c* 1.0). The IR, ^1H NMR and MS were consistent with structure.

Acetylation of 5

A mixture of **5** (20 mg), dry pyridine (0.5 mL) and Ac_2O (1.5 mL) was stirred, at RT for 1 hr. The acetate, **5a**, was obtained as a colourless solid (33 mg) which crystallized from EtOAc-hexane as colourless needles. m.p. 118-19°C (lit^{2,3}; 116-16.5°C). Anal. Found: C, 53.2; H, 6.4; N, 3.2. Calcd. for $\text{C}_{19}\text{H}_{27}\text{NO}_{10}$: C, 53.1; H, 6.3; N, 3.3%. $[\alpha]_D^{25} - 9.6^\circ$ (*c* 0.5, Me_2CO , lit⁴., -2.88° (*c* 2.08, CHCl_3)). IR, ^1H NMR and MS data were consistent with the structure.

Compound 6

Compound **6** (2.37 g) was purified by column chromatography over silica gel (236 g) eluting with $\text{CH}_2\text{Cl}_2:\text{MeOH}:\text{H}_2\text{O}$ (7:3:1, lower phase) to give **6** as a colourless solid which was recrystallized from EtOAc-hexane as colourless granules, m.p. 146-148°C (lit^{3,5,6}., 140-41°C; 143-45°C; 139-41°C) respectively.

$[\alpha]_D^{25} - 22.2^\circ$ (*c* 0.35, H_2O , lit⁵., 28.5° (*c* 0.39)). IR, ^1H NMR and MS were identical with those of authentic sample.

Acetylation of compound 6

Compound **6** (100 mg) was acetylated with Ac_2O and pyridine to give tetraacetate, **6a** (158 mg) which recrystallized from EtOAc-hexane as colourless

needles, m.p. 142-43°C (lit^{3,5,6}., 140-41°C; 140-41°C, 138-39°C respectively). $[\alpha]_D^{25}$ - 11.2 (c 0.2, Me₂CO, lit⁵.; 10.55°); IR, ¹H NMR and MS data of this compound were identical with those of an authentic sample.

Compound 7

Compound **7** (2.3 g) was purified by column chromatography over silica gel (160 g) eluting with CH₂Cl₂:MeOH:H₂O (7, 3, 1, lower phase) to give a yellow solid which recrystallized from MeOH as yellow granules; m.p. 178-83°C (lit⁷; 185-90°C). $[\alpha]_D^{25}$ - 4.9° (c 0.4, MeOH). IR, UV-VIS, ¹H NMR and MS data were consistent with the structure.

Acetylation of compound 7

A solution of **7** (20 mg) in pyridine (0.5 mL), 4-dimethyl aminopyridine (0.3 g) and Ac₂O (1.5 mL) was stirred at RT overnight. The acetate derivative, **7a**, was obtained as a solid (31 mg), m.p. 110°C. $[\alpha]_D^{25}$ - 60.2° (c 2.23, CHCl₃). IR, and ¹H NMR were consistent with the structure.

Acid hydrolysis of 7

A solution of the glycoside (67 mg) in 1% H₂SO₄ in 50% aqueous EtOH (4 mL) was refluxed for 8 hr. After removal of EtOH, the residue was partitioned between H₂O - *n*-BuOH. The *n*-BuOH layer was evaporated to give the crude flavonoid as a yellow residue (90 mg) which was separated over a column of silica gel (10 g) eluting with CH₂Cl₂:MeOH:H₂O (20:3:1, lower layer) to give **10** (kaempferol) as a yellow solid (25 mg). Recrystallization from MeOH yielded yellow granules, m.p. 268°C (lit¹¹., 276-78°C). The structure was consistent with the IR, ¹H NMR and MS data.

Acetylation of 10

A solution of **10** (10 mg) in pyridine (0.5 mL), 4-dimethyl aminopyridine (0.3 g) and Ac₂O (1 mL) was stirred overnight at RT. The acetate, **10a**, was obtained as a brown solid (15 mg), m.p. 100°C, resolidifies, remelts at 173-74°C (dec.), lit⁷, 120°C, resolidifies, remelts at 178-80°C (dec.) IR, ¹H NMR and MS data were consistent with the structure.

Compound 8

Compound **8** was purified by column chromatography over silica gel eluting with CH₂Cl₂:MeOH:H₂O

(6.5:3.5:1, lower phase) to give a yellow solid which crystallized from MeOH as yellow granules. m.p. 192-94°C (lit¹⁰, 214-15°C dec.). $[\alpha]_D^{25}$ +5.8° (c 0.27, EtOH), (lit¹⁰, 13.82°. IR, UV, ¹H NMR and MS data were consistent with structure.

Acetylation of 8

A solution of **8** (10 mg) pyridine (0.5 mL), 4-dimethyl aminopyridine (0.3 g) and Ac₂O (1.5 mL) was stirred at RT for 2 hr. The deacaacetate, **8a**, was obtained as a brown solid (15.3 mg). $[\alpha]_D^{25}$ - 53.5° (c 0.43, CHCl₃). IR and ¹H NMR were consistent with the structure.

Acid hydrolysis of 8

Compound **8** (47 mg) in 5% HCl in 50% aq. EtOH (1.5 mL) was refluxed for 2 hr. After evaporating EtOH, the residue obtained was partitioned between H₂O-*n*-BuOH. The BuOH layer, on evaporation, gave crude flavonoid fractions as a yellow residue (120 mg) which was separated over a silica gel column (10 g) eluting with CH₂Cl₂: MeOH:H₂O (20:3:1, lower phase) to give **11**, quercetin, after crystallizing from MeOH as yellow granules. m.p.>300°C (lit⁸, 313-14°C). The IR and ¹H NMR data were identical with those of an authentic sample.

Acknowledgement

The author is grateful to Dr. N. Vethavyasar of the Chemistry Department of the University of London for the spectral measurements of the compounds.

References

- 1 Smith R E, Osothsilp C, Bicho P & Gregory K F, *Biotechnol Lett* 8, **1986**, 31.
- 2 *The XTAL 2.2 User's Manual*, edited by Hall S R & Stewart J M (Universities of Western Australia and Maryland), **1986**.
- 3 Seiger D, *Phytochemistry*, 14, **1975**, 9.
- 4 Bissett F H, Clapp R C, Coburn R A, Ettlinger M G & Long L Jr, *Phytochemistry*, 8, **1969**, 2235.
- 5 Clapp R C, Bissett F H, Coburn R A & Long L Jr, *Phytochemistry*, 5, **1966**, 1323.
- 6 Malik K B, *Indian J Chem*, 168, **1978**, 76.
- 7 Geiger H & Beckman S, *Naturforsch*, 20b, **1965**; *Chem Abstr*, 64, **1966**, 11554a.
- 8 Schindler H & Herb M, *Arch Pharmacol*, 288, **1955**, 372.
- 9 Ferguson J H, *J Am Chem Soc*, 54, **1932**, 4086.
- 10 *Dictionary of Organic Compounds*, Vol.5, edited by Buckingham J & Donaghy S M (Champman & Hall, New York) **1982**, p 4942.
- 11 *Dictionary of Organic Compounds*, Vol.4, edited by Pollock J R A & Stevens R, **1981**.